百家桨坛 | 第五期:算法工程师福利:图像分类Trick集锦

点击左上方蓝字关注我们

图像分类是深度学习计算机视觉技术中极其重要的应用场景和技术基础,图像检测、语义分割等等各种任务场景都需要基于图像分类的基础能力,也是大家入门深度学习CV方向任务开发极好的切入点。

 

飞桨PaddleClas不仅为大家提供了一个完善、易用的图像分类工具,使开发者可以快速构建图像分类算法及应用,其提供的极其丰富的分类网络及对应的预训练模型,还可以作为图像检测、语义分割、关键点检测等高层视觉任务的骨架网络,使模型获得更好的效果。

 

针对如此关键的图像分类任务,PaddleClas团队提炼了开发过程中,开发者常会遇到的问题和一些巧妙的开发技巧(Trick),助力大家更快、更好的获得最佳的模型及应用效果。

除了以上10个精选问题,我们还汇聚了另外20个PaddleClas高频FAQ。这些FAQ经历了大量项目的验证,属实是项目实战的好帮手,访问PaddleClas项目地址就可以统统收入囊中了!(点击“阅读原文”即可访问)

 

请识别下方二维码,参与飞桨PaddleClas问卷调查,惊喜彩蛋等您来拿!

为了帮助开发者快速解决项目落地过程中遇到的问题,深入了解PaddleClas实际使用情况,我们设计了此份问卷,期待您的参与。如果您希望与飞桨PaddleClas团队进行更深入的合作,请务必在问卷中填写基本信息,以便我们可以联系到您,并提供更深入的支持。

如果您在使用PaddleClas的遇到问题时,欢迎移步到ISSUE提问,有丰富经验的飞桨资深工程师会及时帮你解决。

PaddleClas项目地址:(欢迎大家点Star支持!)

https://github.com/PaddlePaddle/PaddleClas

如在使用过程中有问题,可加入飞桨官方QQ群进行交流:1108045677。

如果您想详细了解更多飞桨的相关内容,请参阅以下文档。

飞桨官网地址:

https://www.paddlepaddle.org.cn/

飞桨开源框架项目地址:

GitHub: 

https://github.com/PaddlePaddle/Paddle 

Gitee: 

https://gitee.com/paddlepaddle/Paddle